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A model of unsteady subsonic flow
with acoustics excluded
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Diverse subsonic initial-boundary-value problems (flows in a closed volume initiated
by blowing or suction through permeable walls, flows with continuously distributed
sources, viscous flows with substantial heat fluxes, etc.) are considered, to show that
they cannot be solved by using the classical theory of incompressible fluid motion
which involves the equation divu¯ 0. Application of the most general theory of
compressible fluid flow may not be best in such cases, because then we encounter
difficulties in accurately resolving the complex acoustic phenomena as well as in
assigning the proper boundary conditions. With this in mind a new non-local
mathematical model, where divu1 0 in the general case, is proposed for the simulation
of unsteady subsonic flows in a bounded domain with continuously distributed sources
of mass, momentum and entropy, also taking into account the effects of viscosity and
heat conductivity when necessary. The exclusion of sound waves is one of the most
important features of this model which represents a fundamental extension of the
conventional model of incompressible fluid flow. The model has been built up by
modifying both the general system of equations for the motion of compressible fluid
(viscous or inviscid as required) and the appropriate set of boundary conditions. Some
particular cases of this model are discussed. A series of exact time-dependent solutions,
one- and two-dimensional, is presented to illustrate the model.

1. Introduction

The main theoretical basis of incompressible fluid mechanics looks so complete
today that any attempt to change or expand the well-known fundamental concepts
could be regarded as unpromising. Nevertheless, let us discuss some features of
the classical model of incompressible fluid flow that has been comprehensively
expounded along with numerous applications by Lamb (1932), Landau & Lifshitz
(1959), Milne-Thomson (1960), Batchelor (1967), Panton (1984).

According to the usual interpretation of the inviscid version of that model, the
general continuity equation in the absence of mass sources

¥ρ}¥t¡[(ρu)¯ 0 (1)
is split into two equations:

¥ρ}¥tu[¡ρ¯ 0, (2)

¡[u¯ 0. (3)

After adding the equation of motion for inviscid fluid with external mass force f

ρ(¥u}¥tu[¡u)¡p®ρf¯ 0, (4)
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we obtain a closed system (2)–(4) for the local variations of fluid velocity u, density ρ
and static pressure p which is here determined to within an arbitrary additive function
p
a
(t). This system has remained unchanged since the eighteenth century when it was

proposed by Euler (1769).
In fact equation (2) implies invariable density for each flowing liquid particle of small

fixed volume while the whole density field may have considerable gradients. The
density of the liquid particle is thereby supposed to be independent of any pressure
variations. This key assumption, although seeming too strong, represents the rigorous
definition of an incompressible fluid medium, and, as a result, enables us to derive the
closed system of governing equations without using any equation of state (thus it is not
necessary to regard system (2)–(4) only as a reduction of the general model of
compressible fluid flow when the characteristic Mach number tends to zero). Some
authors, without going into detail, identify the term incompressible fluid flow with a
constant density all over the flow region.

In this way the classical model of incompressible fluid flow includes equation (3)
which simplifies any possible subsequent equations and allows us to use all the
mathematical methods developed for the analysis of solenoidal vector fields
(introducing, in part, the scalar stream function for two-dimensional flow). This
explains why one may feel anxiety in considering the idea of giving up equation (3) as
a step towards a generalization of the model.

It is now universally recognized that this model, derived from the analysis of fluid
motion in a small volume surrounded by an infinitely extended fluid medium, can be
applied to the study of any bounded flows without any changes in equations (2)–(4).
The form of system (2)–(4) is regarded as absolutely independent of the boundary
conditions, in spite of the fact that we consider so exotic a medium as an incompressible
fluid characterized by an infinitely large speed of sound. However, a series of simple
illustrations will be suggested below to show that the usual local model of
incompressible fluid flow does not work when applied to the solution of some initial-
boundary-value problems.

Let us consider a closed container filled with a gaseous medium and bounded by a
permeable non-moving wall, through which subsonic blowing takes place. Evidently,
this problem cannot be simulated within system (2)–(4). When a moving impermeable
wall, as a boundary, changes the volume of a closed container, the simulation of this
situation is also forbidden by equation (3). It is generally impossible to assign values
of the normal velocity at each boundary point in an independent manner, if we use
equation (3). Only those profiles of the normal velocity are acceptable which have zero
integral all over the boundary (if there is no mass source in the volume). Unfortunately,
we have to apply too restricted a choice of boundary conditions because of an
oversimplified system of differential equations governing the fluid motion in a small
internal volume. As a consequence, it becomes clear that the classical model should be
extended to avoid a number of serious limitations.

If the pronounced effects of viscosity and molecular heat conductivity are under
study, one could try to take the usual incompressible version of the Navier–Stokes
equations, where divu¯ 0 is assumed too, supplemented by the equation of heat
conduction. Then we can see that additional difficulties arise in applying this ordinary
approach. For instance, let us take the case of a container filled with a gaseous medium
and bounded by heat-conducting impermeable rigid walls. Under physically possible
conditions, on increasing the wall temperature by external heating we can stimulate the
convective heat transfer inside as well as the processes of molecular heat conduction.
As a result the pressure P(t) averaged over the volume will increase. If we expand the
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model by introducing the functional link between density and temperature that is so
common in various problems of heat convection (including the simplified versions of
this approach like the Boussinesq 1903 approximation), the above changes in P(t)
cannot be predicted and so a net decrease of total mass in the container will occur.
Hence, such a simple version of the thermodynamic equation of state as a direct
relation between density and temperature is insufficient for the study of processes
accompanied by appreciable time variations of the average pressure in a bounded flow
region.

Moreover, we find equation (3) to not apply when there is a substantial heat transfer
due to molecular thermal conductivity. Indeed, on using (3) even in a one-dimensional
case (one could take a cylinder which is bounded by two rigid impermeable walls with
different values of the temperature assigned), we meet with an obvious contradiction:
mass transfer, caused only by heat conduction, can take place without any flow! It is
also relevant to recall the ‘energy-equation paradox’ in a heat-conducting in-
compressible flow, described by Panton (1984, 10.3). There is the vanishing difference
between specific heats c

p
and c

v
at constant pressure and at constant volume

respectively (or γ¯ c
p
}c

v
3 1) that in turn prohibits the use of the common set of

thermodynamic relations in the study of subsonic gas flows. Thus we come to the
undeniable conclusion that any known version of the incompressible viscous flow
model is unlikely to be acceptable for the simulation of thermal conduction with
significant heat fluxes.

Another topical problem to be solved is associated with the question of whether
sources of mass, momentum and entropy, continuously distributed in the flow region,
ought to be simulated solely within the general model of compressible fluid flow. In
practice incompressible fluid mechanics operates only with the notion of a point mass
source, when equation (3) is valid everywhere beyond that point. The attendant
singularities are the high price we pay for using equation (3) in such cases. Nobody has
proposed how to expand the model (2)–(4) taking into consideration the continuously
distributed mass sources, because in this case the splitting of the continuity equation
is not a trivial procedure. Additional questions appear if thermal phenomena with
distributed heat sources take place as well. One should take into account that the
distributed mass sources are usually accompanied by sources of entropy since any new
fluid particle has a definite specific entropy. Hence, any attempt to introduce
distributed mass sources into equation (1) demands consideration of the entropy
balance. Sometimes entropy sources may arise without mass production, particularly
in the case of volume heat release. In any event, we need a new model which would give
the possibility of studying distributed sources of both mass and entropy that could be
specified independently.

Here we should also touch upon a long-standing problem of far-reaching
importance. In reality any time-dependent sources have to act on a certain unsteady
mean flow (or background flow) as well as to generate acoustic disturbances ; see
Goldstein (1976). It is highly desirable to find conditions where the separation of these
different effects is possible within a definite theoretical approach, in order to determine
what portion of the source action causes the evolution of the mean flow. Otherwise,
one can find sound sources where they are completely absent. Again, similar questions
arise if we study the action of quite general unsteady boundary conditions, for instance
those assigned on permeable or moving walls.

Obviously the classical model of incompressible fluid flow is inappropriate for the
solution of the above problems. One can argue that in all the cases mentioned we
should apply the more general (and surely more complicated) model of compressible
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fluid flow, viscous or inviscid as required, instead of discussing defects of system
(2)–(4). But in doing this we meet with inevitable numerous difficulties in the analysis
of complex nonlinear acoustic phenomena. Computational methods of simulation can
play a significant role here, along with experimental research. However, any mistake
in the proper assigning of acoustic impedance of the boundary, a permeable one in
particular, can lead to unpredictable consequences in the flow evolution. Sometimes
the impossibility of formulating a plausible set of boundary conditions represents an
unavoidable obstacle to the solution. To this must be added that we have to use the
most sophisticated finite-difference methods of integrating the governing equations to
ensure the necessary temporal and spatial resolution of acoustic processes characterized
by relatively small amplitudes of sound disturbances. If acoustics is not the main
research goal, it is not helpful to simulate simultaneously both the evolution of
unsteady mean flow and the attendant acoustic processes since these phenomena, when
considered separately, usually have very different characteristic times. During the
computational study of subsonic flows this would require an extremely small time step
in the finite-difference scheme, which in turn demands a lot of computer time. All these
difficulties explain why such general solutions are very rarely met in publications.
Nevertheless, we cannot avoid this thorny path when considerable interaction between
unsteady subsonic flow and sound waves is under investigation – for instance, if we
study self-excited resonance phenomena in ducts of complex geometry, where
instability of separated viscous flows occurs along with accompanying processes of
sound generation and acoustic feedback (see Fedorchenko 1987).

Therefore it seems attractive to create a radically new mathematical model for the
simulation of unsteady subsonic flows in a bounded domain taking into account
continuously distributed sources of different kinds, rather complex boundary
conditions, substantial heat conduction, etc., but excluding all acoustic effects. It would
imply that we are looking for a model which is much more general than (2)–(4) but less
general than the model of compressible fluid flow. Thus we could fill a sizable gap in
the available mathematical models of fluid mechanics. For the flow in a bounded
spatial domain this approach would mean that the medium is compressible as a whole,
with considerable time changes of average pressure being allowed, but the existence of
sound waves is completely precluded. In doing so we assume the sound speed to be
infinitely large even if we retain something like a thermodynamic equation of state.
Mathematically this means that we need a time-dependent system of governing
equations that would display the local properties as partially elliptic (as well as,
additionally, parabolic ones in the case of unsteady viscous flow) but it would have no
hyperbolic characteristics responsible for the propagation of sound (only convection
by the flow is permitted). It should be emphasized that we do not demand this system
to be of strictly differential type, local in both time and space, since we are trying to
take into account some non-local effects resulting from boundary conditions.

It is well known that the filtering of sound disturbances, especially high-frequency
waves, represents a problem of much current interest in the computational simulation
of numerous flows, both internal and free, when acoustics is not the research focus.
Moreover, boundary conditions assigned in an incorrect manner (for instance,
boundary value overspecification) may be regarded as a source of such waves which in
turn, emanating from the boundary, cover all the domain with error (see Oliger &
Sundstrom 1978). A great variety of approaches has been proposed to settle this
problem: the introduction of additional dissipative terms into the basic equations,
special finite-difference approximations, sound absorption on the boundary, etc. But
all these methods are far from universal and seldom work in a fully satisfactory manner
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since it is hardly possible to exclude all sound sources when we use the general model
of a compressible medium. It seems that the modification of subsonic flow equations
to eliminate completely the mechanism of sound propagation could be the most radical
and effective approach for removing all above difficulties caused by acoustic effects.
The resulting system of course must remain quite general in order to describe any other
phenemona under research. However, we do not simply pursue the aim of getting rid
of acoustics everywhere if possible. On the contrary, it is clear that only by separating
out all ‘ incompressible features ’ can one come to a better understanding of sound
generation and propagation in unsteady subsonic flows.

The results given below represent a fundamental extension of the classical model of
incompressible fluid flow. This new non-local model, where div u1 0 in general, has
been developed for the simulation, either theoretical or computational, of unsteady
subsonic flows in a bounded spatial domain with the presence of continuously
distributed sources of mass, momentum and entropy as well as with substantial heat
fluxes, but excluding acoustics. It is shown that this model does broaden significantly
the class of initial-boundary-value problems in fluid mechanics that could be solved
without considering acoustic phenomena. The central ideas of this approach were
briefly described by the author in 1995 and 1996.

The paper is divided into three main sections as follows. In the next we describe a
logical way of deriving the new approximate system of governing equations by
modifying the general equations commonly used for the study of inviscid compressible
flows within a certain initial-boundary-value problem. The set of basic assumptions as
well as the main properties of the derived equations are discussed. The important
particular case of adiabatic flow is investigated.

In the third section the additional effects of viscosity and heat conductivity are
considered. It is shown how these effects change the system of basic equations formerly
derived for the inviscid case. Some new features are discussed within this extended
version of the model.

In the fourth section a set of time-dependent two-dimensional exact solutions is
found for near-adiabatic subsonic flows of both viscous and inviscid media. The family
of exact one-dimensional solutions has also been found for subsonic flows of heat-
conducting viscous gas without distributed sources.

2. Inviscid subsonic flow

First we shall consider the general system of local equations which could be applied
to the simulation of unsteady subsonic flow of a compressible ideal medium in a certain
bounded spatial domain G within a finite time interval J¯ (0, t

f
) :

¥ρu}¥t(ρu[¡)uu¡[(ρu)¡p
c
¯ ρfw, (5)

¥ρ}¥t¡[(ρu)¯ ξρ, (6)

¥s}¥tu[¡s¯ q, (7)

F(s, p
c
, ρ)¯ 0. (8)

Here we denote the time, velocity of fluid particles, density, static pressure, specific
entropy, assigned mass force, rate of momentum change because of mass source, and
mass source strength per unit mass as t, u, ρ, p

c
, s, f, w, ξ respectively (in particular

w¯ ξρu if fluid particles, arising from mass sources, are at rest relative to the local
background flow), q is the entropy source per unit mass due to both volume heat
release and a non-zero mass source (the case is possible when ξ1 0 but q¯ 0 if the
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arising fluid particles have the local specific entropy of the mean flow). Naturally
equation (7) is equivalent to the following one:

¥(ρs)}¥t¡[(ρsu)¯Q
s
¯ ξρsρq.

To begin with, we assume that ξ, q, f, w are independently assigned functions of r,
t in G¬J, where r is the radius-vector of a point considered in a fixed coordinate
system. All the above-mentioned variables are supposed to be continuous and smooth
functions of r, t in G¬J. The medium will, to fix the ideas, be regarded as a perfect gas,
i.e. we take (8) as

s¯ c
v
ln (p

c
}ργ), γ¯ c

p
}c

v
¯ const,

where c
p
, c

v
are the values of specific heats at constant pressure and constant volume

respectively.
While posing an evolution problem in G¬J one should specify a set of initial and

boundary conditions. We shall take the following local relations as possible boundary
conditions:

Φ
j
(u

n
, p

c
, s, r, t)¯ 0, r `Γ, t ` J, j¯ 1,… ,N, (9)

where u
n
¯u[n, n is the outward normal to the smooth boundary surface Γ, which

may move, and Φ
j
are assigned functions. Of course, the concrete form of Φ

j
as well

as the total number N of independent boundary relations at the given boundary point
depend on the sign of u

f
¯ u

n
®uΓ where uΓ denotes the specified velocity of Γ(t) along

n. For instance, the set of boundary conditions

Φ(u
n
, p

c
, r, t)¯ 0, (10)

s¯ θ(r, t), (11)

can be applied at r `Γ, where u
f
! 0. Relation (11) means that the entropy of inflowing

fluid particles should be prescribed at each boundary point where u
f
! 0. On the

permeable part of the boundary where u
f
" 0 we should use only one condition,

like (10).
Below we shall emphasize, as important particular cases, two kinds of domain G in

accordance with a possible application of two types of boundary conditions:
G¯G

m
, if the normal velocity u

n
is assigned all over Γ (then ¥Φ}¥p

c
¯ 0 in (10)) ;

G¯G
p
, if the pressure p

c
is assigned on the permeable surface Γ

p
ZΓ (p

c
¯ p¢ ¯

const in the limiting case of an infinitely remote boundary Γ
p
).

In more general cases this separation can correspond to the use of two models of
permeable boundaries S

m
and S

p
proposed by the author in 1982 and 1986.

Attention should be drawn to the fact that all these boundary conditions in no way
influence the form of equations (5)–(8), since we are considering the most general
model yet of compressible fluid flow. However, we shall further depart from this
concept in our efforts to build the new non-local model of subsonic flow without
acoustic effects.

As a first step, we split the pressure in the manner

p
c
(r, t)¯P(t)p(r, t), (12)

where P(t) is a certain average pressure in G that, as shown below, depends on ξ, q as
well as on the assigned set of initial and boundary conditions. For p a normalization
condition is introduced,

&
G

pd�¯ 0 or p(r
o
, t)¯ 0, (13)
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where r
o

denotes a particular fixed point of Γ
p
. It should be noted that this does not

correspond to the usual decomposition of a flow variable as the sum of a known mean
value and a small disturbance to be found, but here both P and p are unknown
variables in general.

Some estimates are assumed to be valid:

P¯O(ρ
o
a#), rpr% δp,

pE p
"
p

#
, sp}Ps

G
¯ δp}P¯ εE ε

"
ε

#
,

ε
"
¯ sp

"
}Ps

G
#M #¯U #}a#' 1, U¯ sus

G
,

ε
#
¯ sp

#
}Ps

G
¯M

a
' 1,

δp(t)¯ δp
c
(t)¯max rp

c
(r

"
, t)®p

c
(r

#
, t)r, r

"
, r

#
`G, t ` J ;

5

6

7

8

(14)

ρ
o
, U, a are respectively the characteristic values of density, flow velocity and adiabatic

speed of sound in G¬J ; by introducing p
"
, p

#
we are trying to separate approximately

the contributions of local dynamic effects, often essentially nonlinear, in unsteady
‘background flow’ (in part p

"
reflects the degree of flow non-uniformity since p

"
¯ 0 in

uniform flow at any values of the mean Mach number M ) from acoustic disturbances
of pressure which are assumed to be manifested by small values of acoustic Mach
number M

a
. Sometimes it is better to specify the characteristic velocity as follows:

U #¯LW, where W¯ s¥u}¥t(u[¡)us
G

and L is the characteristic length. Evidently,
the source terms in (6)–(7) do not change these estimates when

rξr#O(U}L), rq}sr#O(U}L).

For instance, if we consider the gravity force f
g
, the hydrostatic effects can contribute

to δp
c
and hence the requirement

(δp
c
}P)

g
¯O(ρ

o
gh}P)!O(ε)' 1,

should be met, where h denotes the size of domain G along vector f
g
, and g¯ r f

g
r

is the acceleration due to gravity. Thus we arrive at some limitations on h to retain the
validity of our model in this case. However, as will be mentioned below, internal
subsonic flows with reasonable h represent the main application area of this model.
Moreover, we can take G with L( h where L is the maximum length of G.

It is logical to assume rdP}dtr#O(ρ
o
a#}τ) where τ¯O(L}U ). Then

Sh
u
¯ sdP}dts τ}P#O(1),

Sh
a
¯ sdP}dts τ

a
}P#O(M )' 1.

A small value of Sh
a
implies that the characteristic time for appreciable changes in P(t)

is much longer than the time interval τ
a
¯O(L}a) during which a sound wave crosses

the flow region in real conditions.
Taking into account (12)–(14) we shall use the following form of the equation of

state instead of (8) :
F(s(r, t),P(t), ρ(r, t))¯ 0, (15)

which approximates (8) with an error O(ε). It means that the variations of both density
and entropy, which can be quite substantial, are not influenced by the relatively small
spatial changes of pressure. In doing so, we have to be aware that this may introduce
errors O(ε) into the values of all flow variables. Nevertheless, this assumption is more
general than that used as basic in the classical model of incompressible fluid flow.
Actually, in the latter the density is supposed to be independent of any pressure
variations.
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After using (15) and substituting (12) into (5) the following system of equations is
suggested for the simulation of unsteady subsonic flow in G¬J :

¥ρu}¥t(ρu[¡)uu¡[(ρu)¡p¯ ρfw, (16)

¥ρ}¥t¡[(ρu)¯ ξρ, (17)

¥s}¥tu[¡s¯ q, (18)

F(s,P, ρ)¯ 0. (19)

Note that the form of (16)–(18) is exactly the same as that of (5)–(7), but the
appearance of the modified equation (19) results in a model with new unusual features.
In particular, it will be shown below that this new model does filter all sound waves.

This sytem must be supplemented by boundary conditions (9), where p
c
¯Pp,

although in many cases it is quite possible to omit p in (9), giving

Φ
j
(u

n
,P, s, r, t)¯ 0, r `Γ, t ` J, j¯ 1,… ,N, (20)

and so boundary relations (10), (11) become

Φ(u
n
,P, r, t)¯ 0, s¯ θ(r, t), r `Γ, t ` J.

We shall use these simplified conditions because of the obvious advantage that now the
variable p is absent everywhere except in (16), if functions f, w, ξ, q are independent of
p. Then only the values of ¡p are significant.

To make system (16)–(19) closed, we should also specify the procedure for finding
the global flow �ariable P(t) which is generally unknown. With this aim we take the
differential form of the equation of state (19)

¥s}¥tu[¡s¯ (¥s}¥P) dP}dt(¥s}¥ρ) [¥ρ}¥tu[¡ρ]. (21)

In accordance with (19) we have now s¯ c
v
ln (P}ργ), ¥s}¥P¯ c

v
}P, ¥s}¥ρ¯®c

p
}ρ.

By using (17), (18) along with (21) we find that

¡[u¯ ξη®(dP}dt)}(γP), η¯ q}c
p
. (22)

Comparing this equation with more general version derived exactly from (6)–(8)

¡[u¯ ξη®(dP}dt¥p}¥tu[¡p)}(γ(Pp)),

one can see that here not only has the small value of p been omitted in the expression
Pp, but we have also simplified the general form by assuming

r(¥p}¥tu[¡p)}P r¯O(εU}L)' r¡[ur¯O(U}L).

If we integrate (22) over the confined domain G, which has a moving boundary Γ(t)
and accordingly a changing volume V(t), the following equation can be derived with
the use of Gauss’ theorem:

V

γP

dP

dt
¯&

G

(ξη) d�®&
Γ

u
n
dσ. (23)

Rewriting the new form of (10) in accordance with (20) as

u
n
¯ } (P, r, t), r `Γ, t ` J, (24)

and substituting (24) into (23) we obtain the integro-differential equation allowing us
to determine P(t) in the general case.

Equations (23), (24) explain why we cannot neglect the term dP}dt in (22) even if the
non-dimensional value rdP}dtrL}(PU ) is quite small. Indeed, the variations of p

"
, p

#
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may produce a very small contribution into the total mass balance in G, much less after
averaging over the volume and within time interval τ( τ

a
. On the contrary, even the

slowly varying pressure P(t), for instance, is monotonically increasing due to non-zero
mass flux through the boundary, it can cause drastic changes in the total mass value.
Moreover, this simple example emphasizes the fact that just due to the term dP}dt in
(22) we can assign the boundary values of normal velocity in a quite independent
manner, and in turn this equation can be basic for the calculation of P(t).

When we investigate the particular case of domain G
m
(¥} }¥P¯ 0), it is easy to give

an explicit formula for P(t). Denoting the right-hand side of (23) as Z(t), we have

P(t)¯P
o
exp& t

!

γ(Z}V ) dt, P
o
¯P(0). (25)

If we consider the special case G¯G
p
, then we take P(t)¯ p

c
(r

o
, t), r

o
`Γ as an

assigned function and so we do not need equation (23) (although now one could
evaluate the total fluid flux through Γ

p
by means of (23), at least in the adiabatic case).

Here we find the average pressure P(t) in G
p

by assigning the mean pressure P
e
(t) on Γ

p

(more accurately P(t)¯P
e
(t)O(ε), P

e
(t)¯ p

c
(r

o
, t)O(ε)). It means that we do not

prescribe the average pressure in G regardless of the boundary conditions, as is often
done.

It should be noticed, however, that the simplified boundary conditions (20) may
not be accepted in some cases, especially if we consider the topical problem of
formulating the set of appropriate conditions on the outflow boundary Γ

e
where the

mean pressure P
e
(t) is assigned and through which a subsonic flow carrying strong

vortices escapes from domain G. For instance, such a boundary could simulate the exit
section of a confined duct that is connected to a large volume filled with gaseous
medium under the given mean pressure P

e
(t). Some methods were given by the author

in 1986 for solving this problem for the computational simulation of both viscous and
inviscid compressible flows. These provided an acceptable resolution of self-generated
acoustic phenomena, although the non-local procedures for active boundary control
proposed there may cause extreme difficulties in the computational realization of the
initial-boundary-value problem. Principally the same approach can be used here by
applying the generalized non-local version of (9).

Some additional complexity can arise if ξ, η are functions of ρ, s, r, t. All the above
generalizations result in a rather complex system of integro-differential type.
Nevertheless, the solution of a definite initial-boundary-value problem is quite
possible, at least with the use of computational methods.

In conclusion, we have built a closed non-local system of equations for the full set
of flow variables ²u,P, p, ρ, s´.

We can also obtain the equivalent system in which entropy is excluded:

¥ρu}¥t(ρu[¡)uu[¡(ρu)¡p¯ ρfw, (26)

¥ρ}¥t¡[(ρu)¯ ξρ, (27)

¡[u¯ ξη®(dP}dt)}(γP), (28)

supplemented by the above procedure for the determination of P(t), although while
solving (26)–(28) one should keep in mind the associated changes in boundary
conditions (11) as well as the physical meaning of the source η. On obtaining both P
and ρ, it is easy to find s from (19) and in turn to evaluate the temperature T¯P}ρR
(R¯ c

p
®c

v
¯ const) or any other thermodynamic function.

We could even exclude P from system (26)–(28) if the domain G
m

is under
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consideration. When we use (23), equation (28) can be rewritten in the following
integro-differential form:

¡[u¯ ξη®Z}V.

This compact equation reflects the most remarkable feature which distinguishes this
model from any traditional approaches: the system of equations governing the fluid
motion in any small internal volume is instantaneously non-locally related to the
boundary conditions, as well as to the distribution of sources all over the flow domain.
This is not the usual instantaneous influence of boundary conditions on the local fluid
motion that is inherent in the classical incompressible flow model due to its partially
elliptic nature, but it is an explicit non-local dependence of the basic equations on both
boundary conditions and distributions of volume sources.

One can see that only in the particular case when dP}dt¯ ξ¯ η¯ 0, does our model
reduce to the classical model of incompressible fluid flow where ¡[u¯ 0, s¯ s(ρ).

It is very important that this non-local model enables us to simulate unsteady
subsonic flows with continuously distributed sources of mass, momentum and entropy
as well as to assign the boundary values of normal velocity in an independent manner.
In contrast, the usual local model of incompressible fluid flow cannot describe such
general cases.

We can perform the local characteristic analysis of system (26)–(28) following the
approach developed by Courant & Hilbert (1962). Let us take w¯ ξρu and assume f,
ξ, η,P to be known functions within a small internal volume. Then we write the quasi-
linear version of (26)–(28) for independent flow variables ²u, ρ, p´ as

¥u
i
}¥tu

k
¥u

i
}¥x

k
(¥p}¥x

i
)}ρ¯ f

i
, (29)

¥ρ}¥tu
k
¥ρ}¥x

k
¯m, (30)

¥u
k
}¥x

k
¯ g, i,k¯ 1, 2, 3, (31)

where f
i
, m¯ ρ(ξ®g), g¯ ξη®(dP}dt)}(γP) represent zero-order forcing terms

which do not change the main local properties of (29)–(31). To classify this system we
should investigate the matrix partial differential operator corresponding to (29)–(31).
On doing so we find the characteristic algebraic equation (characteristic cone) for new
variables ²τ, θ

i
´ instead of ²t,x

i
´

(τu
k
θ
k
)$ (θ#

k
τ#)¯ 0.

This equation shows that system (29)–(31) displays combined local properties :
partially hyperbolic (three sets of characteristics dx

i
}dt¯ u

i
responsible for the

convection by flow) and partially elliptic (instantaneous global connection between
fields of pressure and velocity). These resemble the features of the traditional system
of equations applied to the simulation of incompressible fluid flows. Our model permits
us to study the evolution of two types of disturbances, vorticity and entropy (in
problems of hydrodynamic stability too), but excluding sound waves. The absence of
sound waves is obvious just from the modified equation of state (19) where p is omitted,
i.e. we have no explicit connection between local variations of p and ρ ; this results in
an infinitely large speed of sound. However, the significant aspect of this model is that
it is possible to estimate the values of a#¯γP}ρ and hence to calculate the
characteristic value of M

o
¯U}a

o
. Actually the value of M

o
is assigned by the initial

value of average pressure P
o
. In turn one can evaluate immediately the allowable

accuracy of a solution. Thus we can regard the pre-assigned dimensionless parameter
(Euler number) Eu

o
¯P

o
}(ρ

o
U #)¯ 1}(γM #

o
)( 1 as a principal criterion of similarity

within this model.
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Let us now consider the important particular case of this model when ξ¯ 0, η¯ 0,
s¯ const. Then we write the following system instead of (26)–(28) :

¥u}¥t(u[¡)u(¡p)}ρ¯ f, (32)

dρ}dt¡[(ρu)¯ 0, (33)

¡[u¯®(dP}dt)}(γP)¯φ(t), (34)

ρ¯ ρ(t)¯ ρ
o
(P}P

o
)"/γ, T¯T(t)¯T

o
(P}P

o
)(γ−")/γ, (35)

where P
o
¯P(0), T

o
¯T(0), ρ

o
¯ ρ(0). Here the variables P(t), φ(t) depend only on the

boundary conditions according to (23).
By introducing Ω¯ rotu we can derive from (32)

¥Ω}¥t(u[¡)Ω®(Ω[¡)uφΩ¯ rot f. (36)

In the two-dimensional case we have

(Ω[¡)u¯ 0, Ω¯²0, 0, ζ ´, ζ¯ ¥�}¥x®¥u}¥y,

rot f¯²0, 0,ω´, ω¯ ¥f
y
}¥x®¥f

x
}¥y

and then equation (36) reduces to

¥ζ}¥tu[¡ζφζ¯ω (37)
or, in another manner,

¥ζ}¥t¡[(ζu)¯ω. (38)

Equations (36), (37) differ significantly from the routine vorticity equations used in
the classical model of incompressible fluid flow. The term φζ in (37) can be regarded
as a source of vorticity. Due to the global parameter φ(t) the linear local dependence
of this term on the vorticity should be emphasized, and so it may play a decisive role
in problems where the instability of shear flows is under study. Consequently, a new
method of boundary control over unsteady subsonic flow can be offered: it is possible
to stabilize the flow by changing the boundary conditions, and hence P(t), in the
appropriate manner. Apparently, by decreasing P (dP}dt! 0, φ" 0) with the other
conditions the same, we could promote the stability of shear flow.

Now we shall pose an initial-boundary value problem for isentropic flow ( f¯ 0) in
the confined plane duct G¯²0!x!L, 0! y!H ´ with impermeable sidewalls (�(x,
0, t)¯ �(x,H, t)¯ 0). Two kinds of boundary conditions can be assigned at the ends:

(a) u(0, y, t)¯U
"
(y, t), u(L, y, t)¯U

#
(y, t),

(b) u(0, y, t)¯U
b
(y, t), P¯P

x=L
(t) (i.e. here we can demand p(L, 0, t)¯ 0).

The initial conditions could be taken as follows

u(x, y, 0)¯ 0, P(0)¯P
o
, x, y `G

and then we have to assume U
"
(y, 0)¯U

#
(y, 0)¯U

b
(y, 0)¯ 0. Applying (23), (25) we

find for case (a) that

φ(t)¯ (m
#
®m

"
)}(HL), m

k
(t)¯&H

!

U
k
(y, t) dy, k¯ 1, 2,

P¯P
o
exp& t

!

(®γφ) dt.

In case (b) both functions P(t) and φ(t) are known.
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Now we can decompose the velocity field in G as

u¯u
p
u

s
, rotu

p
¯ 0, divu

s
¯ 0,

u
p
¯φx, �

p
¯ 0, ζ¯ ζ

s
,

and so it is possible to introduce the stream function ψ(x, y, t) such that

u
s
¯®¥ψ}¥y, �

s
¯ ¥ψ}¥x, ∆ψ¯ ζ. (39)

From (37) we derive

¥ζ}¥tu
s
¥ζ}¥x�

s
¥ζ}¥y¥[xφζ ]}¥x¯ 0. (40)

Thus we have obtained the closed system of equations that governs the flow in G.
As a simple example we can find the exact solution of the unsteady problem where

u¯Ugφx, �¯ 0, U¯U(y), g¯ g(t). (41)

Substituting (41) into (40) we arrive at the conclusion that functions g and φ must be
connected by the equation

dg}dtφg¯ 0
that is equivalent to the relation

g¯ g
o
[P}P

o
]"/γ, g

o
¯ g(0), (42)

which is valid for any profile U(y). For instance, it could correspond to case (b) when
we assign P(t) as well as u(0, y, t)¯Ug in accordance with (42).

We can also consider one-dimensional adiabatic subsonic flow in a cylinder under
the boundary conditions of either type (a) or (b) at the butt-ends. With this aim we
write the one-dimensional version of system (32)–(34) for flow variables ²u, p,P, ρ´ :

ρ[¥u}¥tu ¥u}¥x]¥p}¥x¯ 0, (43)

dρ}dtρ ¥u}¥x¯ 0, (44)

¥u}¥x¯®(dP}dt)}(γP). (45)

Here we can keep a rather simple method of solution: first u(x, t), ρ(t), P(t) can be
found by using equations (44), (45) as well as the assigned set of initial and boundary
conditions; then we shall get p(x, t) from (43), (13). Such a method is however valid
only in the one-dimensional case.

In case (a) where U
"
¯U

"
(t), U

#
¯U

#
(t), it is easy to find the explicit form

u¯U
"
x(U

#
®U

"
)}L,

P¯P
o
exp& t

!

[γ(U
"
®U

#
)}L] dt, ρ¯ ρ

o
(P}P

o
)"/γ.

The linear distribution of velocity along the cylinder between arbitrary boundary
values U

"
and U

#
represents the main feature of this flow. Of course this flow evolution

differs from the case of the fully compressible flow model where the variable boundary
values of the normal velocity set up unsteady mean flow, but generate sound waves as
well.

Then we determine p(x, t) by integrating (43) ; this can be done by using the
normalization condition

&L

!

pdx¯ 0.

For instance, let us take U
"
(t)¯ 0, U

#
(t)¯ bt#. Then we have for finite t

u¯ bxt#}L, P¯P
o
exp [®γbt$}(3L)], ρ¯ ρ

o
exp [®bt$}(3L)],

p¯ ρ
o
[L#}6®x#}2] [b#t%}L#2bt}L] exp [®bt$}(3L)].
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Clearly this solution is valid if

M #¯ ρU #

#
}(γP)' 1,

ε¯ sps}P¯ rp(L, t)®p(0, t)r}P' 1.

First we can assume that r(γ®1) bt$}3Lr! 1. Then in cases of both blowing (b! 0,
dP}dt" 0) and suction (b" 0, dP}dt! 0) we must demand ρ

o
rbr tL}P

o
' 1 to ensure

M #' 1, ε' 1. When we take r(γ®1) bt$}3Lr( 1, our solution is valid only if b! 0
because then MU 0 when tU¢ at any values of b, ρ

o
,P

o
.

The examples given demonstrate some specific effects which may be observed in a
bounded volume under non-steady boundary conditions which change the average
pressure P in particular.

3. Subsonic flow of heat-conducting viscous gas

Our model should be generalized if one takes into account possible effects of viscosity
and heat conductivity, and this extension of the model can be made by applying the
same general concept. We can offer the following system of equations for the
simulation of non-steady subsonic viscous flows, by neglecting p in the equation of
state :

¥ρu}¥t(ρu[¡)uu¡[(ρu)¡p¯ ρfwD, (46)

¥ρ}¥t¡[(ρu)¯ ξρ, (47)

¥s}¥tu[¡s¯ (R}P) [¡(λ¡T )Q]q
m
, (48)

F(s,P, ρ)¯ 0, (49)

where T¯P}Rρ, D, λ, Q, q
m

are the temperature, viscous force, coefficient of
molecular thermal conductivity, density of continuously distributed heat sources, and
entropy source due to non-zero mass source, respectively. In (48) we have omitted the
terms responsible for heat release due to viscous friction; these terms are usually too
small in essentially subsonic flow. If we denote the dynamic viscosity as µ(P,T ), then
the components of D in Cartesian coordinates take the form

D
i
¯ (¥}¥x

k
) [µ(¥u

i
}¥x

k
¥u

k
}¥x

i
®#

$
δ
ik

¥u
j
}¥x

j
)], i, j,k¯ 1, 2, 3.

This expression can be simplified when ¡µ¯ 0 to

D¯µ∆u"

$
µ graddivu.

Some changes must also be introduced into the set of boundary conditions.
Relations like (9) can be assigned, along with additional conditions which arise because
of viscosity and heat conductivity. For example, on a permeable (porous) non-moving
wall with suction (u

n
" 0) or blowing (u

n
! 0) we should use the following system of

boundary conditions:

Φ(u
n
,P, r, t)¯ 0, uτ

"
¯ 0, uτ

#
¯ 0,

Ψ(T,n¡T, r, t)¯ 0, r `Γ, t ` J, * (50)

where uτ
"
, uτ

#
are the velocity components in two orthogonal tangential directions at the

given boundary point, and Φ,Ψ are assigned functions.
Generally we could also use a similar set of boundary conditions at the inlet section

of a duct with near-parallel flow. However, if we consider the more difficult case of
imaginary boundary Γ

e
which corresponds to the exit section (there we assign the

pressure P
e
(t) averaged over Γ

e
) through which the viscous vortical flow escapes from
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the confined duct (i.e. our domain G), we should use another set of relations. This is
difficult, as in the inviscid case, but the application of our new model may simplify this
problem, or at least its computational solution. In some cases we do not need to assign
the distribution of p along Γ

e
. Then we prescribe the pressure P(t)¯P

e
(t), since G¯

G
p

in this case, and additionally we have to use some differential relations which could
take the simplest form

¥u
n
}¥n¯ 0, ¥uτ

"
}¥n¯ 0, ¥uτ

#
}¥n¯ 0, ¥T}¥n¯ 0

to complete the total number of necessary boundary conditions at Γ
e

in the viscous
case. If we must specify ¥p}¥n on Γ

e
for a certain elliptic sub-problem within a general

computational algorithm, it is possible to use equation (46) for this, or, in a primitive
manner, even take ¥p}¥n¯ 0 on Γ

e
.

In order to deduce the new expression for divu, we denote the total entropy source
as

q¯ (R}P) [¡[(λ¡T )Q]q
m

¯®¡[(λ}ρ#)¡ρ]QR}Pq
m
,

and then we arrive at the following equation that represents a logical extension of (22) :

¡[u¯ ξη
m
(γ®1) [¡[(λ¡T )Q]}(γP)®(dP}dt)}(γP), (51)

where η
m

¯ q
m
}c

p
.

If we use equation (51) instead of (48), then we obtain the following system, which
is strictly equivalent to system (46)–(49) but now it excludes the entropy:

¥ρu}¥t(ρu[¡)uu¡[(ρu)¡p¯ ρfwD, (52)

¥ρ}¥t¡[(ρu)¯ ξρ, (53)

¡[u¯ ξη
m
(γ®1) [¡[(λ¡T )Q]}(γP)®(dP}dt)}(γP), (54)

P¯ ρRT, λ¯λ(P,T ), µ¯µ(P,T ). (55)

Further we integrate (51) over the confined flow domain G with changing volume V(t)
by again applying Gauss’ theorem in order to derive the following equation for the
determination of P(t) :

VdP}dt¯ (γ®1)&
Γ

(λn[¡T ) dσ®γP&
Γ

u
n
dσ(γ®1)&

G

Qd�γP&
G

(ξη
m
) d�.

(56)

This should be solved with the use of the independently assigned set of both initial and
boundary conditions. Bearing in mind the inviscid version of the model, we can ignore
equation (56) only if the special case G¯G

p
is under consideration.

Thus we have obtained a closed system of equations (52)–(56) (of integro-differential
type in the general case) for the set of flow variables ²u, p, ρ,T,P´ in G¬J. It is a
radically new non-local model, including the Navier–Stokes equations, and is proposed
for the simulation of unsteady subsonic flows in a bounded spatial domain where
continuously distributed sources can be present along with appreciable heat fluxes.

One can confirm that this model is characterized by the complete exclusion of any
acoustic effects, as in the case of its inviscid version. The local analysis of system
(52)–(56) also excludes characteristics responsible for the propagation of sound
disturbances because of the new form of the equation of state (49). Indeed, now we
have an incompletely parabolic system where the second spatial derivatives, arising in
the right-hand sides of (29)–(31), cannot lead to the existence of sound waves.

If Q¯ ξ¯ η
m

¯ 0 and Γ is a non-moving impermeable wall, the average pressure



Unsteady subsonic flow with acoustics excluded 149

P(t) depends only on the total heat flux through the whole boundary. This flux could be
found either directly from boundary conditions (50) or in an implicit manner from the
solution of the initial-boundary-value problem at the given time. The introduction of
the global variable P(t) results in the appearance of a new degree of freedom while
considering the total mass balance in a closed volume with heat conduction through
the walls. This model has notable advantages (first, we now have a better form of the
continuity equation ensuring mass conservation) over the traditional models of
incompressible fluid flow which are commonly used in various problems of heat
convection.

The important distinctive feature of this model should be emphasized: divu1 0 even
if Q¯ η

m
¯ ξ¯dP}dt¯ 0. This reflects the conformity of our model to the natural

fact that any changes in the temperature field due to heat conduction must be
accompanied by flow. For instance, it can induce a streaming, even if this is rather
slow, caused by a non-equilibrium temperature field imposed on initially static fluid
under steady pressure P. It should be recalled that within this model the smoothing of
the pressure field by sound waves is supposed to occur much faster than the above
changes in the fields of both temperature and density.

4. Exact solutions

Now we shall obtain a number of exact solutions, that simulate unsteady subsonic
flows of viscous gas within our model. Some of these solutions reduce naturally to their
inviscid versions. Below we shall not assign the boundary conditions in an independent
manner, as should be done while posing some initial-boundary-value problems, but we
shall try to find an exact solution of a system of equations immediately. Then the
boundary values of all variables will automatically conform to this solution.

4.1. Unsteady two-dimensional �iscous near-adiabatic flows in a
rectangular domain

Let us consider two-dimensional viscous gas flow in the rectangular domain G¯
²rxr!L, ryr!H ´, which corresponds to a confined flat duct with either permeable or
impermeable sidewalls. Here we take f¯ 0, Q¯ 0, s¯ const. The effects of molecular
heat conduction are assumed to be negligible (this approximates the case of flow at
substantial Reynolds numbers in a duct with thermally isolated walls). Then,
introducing the vorticity ζ, we obtain the following system of governing equations:

¥ζ}¥tu ¥ζ}¥x� ¥ζ}¥yζ f¯ ν∆ζ, (57)

¥u}¥x¥�}¥y¯®(dP}dt)}(γP)¯ f, (58)

ζ¯ ¥�}¥x®¥u}¥y, ν¯µ}ρ, (59)

ρ¯ ρ(t)¯ ρ
o
(P}P

o
)"/γ, T¯T(t)¯T

o
(P}P

o
)(γ−")/γ, (60)

and accordingly µ¯µ(t), ν¯ ν(t), f¯ f(t). Here we denote P
o
¯P(0), T

o
¯T(0),

ρ
o
¯ ρ(0).
We shall look for the solutions of (57)–(60) which have the form

u¯ fxα, �¯ fβ, α¯α(y), β¯β(y). (61)
Then we require

¡[u¯ f(αdβ}dy)¯ f, αdβ}dy¯ 1, ζ¯®fx(dα}dy), (62)

and hence we derive from (57)

(df}dt) [d#β}dy#]f #[β(d$β}dy$)(2®dβ}dy) (d#β}dy#)]®νf(d%β}dy%)¯ 0. (63)
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(i) For the flow in a duct with impermeable sidewalls (u¯ �¯ 0 at ryr¯H¯π) we
take

α¯ 1cos y, β¯®sin y.

Equations (62), (63) are valid if we find a solution of the nonlinear differential equation

df}dt2f #νf¯ 0. (64)

If µ¯ const is assumed, we have to solve the second-order equation for m¯ ln ρ :

d#m}dt#®2(dm}dt)#µ(dm}dt) exp (®m)¯ 0.

However, we can investigate the main features of this solution by assuming ν¯ const
when the changes in P(t) are relatively small. Then we obtain the following non-trivial
solution of (64) with specified initial values f

o
¯ f(0) :

f¯ νf
o
}[(2f

o
ν) exp (νt)®2f

o
]. (65)

The stability of this solution depends on the value of f
o
. It is easy to verify that (65)

is asymptotically stable for all f
o
" 0. For f

o
! 0 this solution will be stable only if

f
o
"®ν}2. Here we can introduce the characteristic Reynolds number at t¯ 0, that is

independent of L :
Re

o
¯ 2πr f

o
r}ν.

Then we can rewrite the stability condition for f
o
! 0 in another manner : this flow will

be stable only if Re
o
!Rek¯π. Thus this solution should be emphasized as a

remarkable example which is unique in that the flow evolution can change radically in
relation to the values of initial Reynolds number Re

o
. Here one could recall the

conclusion derived from (37), (38) : generally f! 0 (or dP}dt" 0) may promote the
flow instability.

(ii) Another solution from the family (61) where

α¯ (2®cosh y)}2, β¯ (sinh y)}2,

has been obtained for the flow in a plane duct with permeable walls ryr¯H¯Ar cosh
2E 1.32. Here we deduce the following differential equation for f(t) :

df}dt2f #®νf¯ 0, f
o
¯ f(0).

A non-trivial solution of this equation can be written by changing the sign in front of
ν in (65) :

f¯®νf
o
}[(2f

o
®ν) exp (®νt)®2f

o
].

On analysing this solution one can make sure that it is asymptotically stable only if
f
o
" 0, i.e. when there is a suction through the walls ry r¯H.
(iii) Both the above solutions have corresponding versions for the case of inviscid

flow (ν¯ 0). However, taking the same α,β, we should use the expression

f¯ f
o
}(12tf

o
)

instead of (65). Such solutions will be stable only if f
o
" 0.

(iv) The above solutions may be compared with the exact solution of system
(57)–(60) at P¯ const, ¡[u¯ 0, ν¯ const, that has been found for the flow in a
confined duct ²rxr!L, ryr!H¯ "

#
π´ with permeable walls ryr¯H (blowing if f" 0,

and suction if f! 0). This solution has the form

u¯ fx cos y, �¯®f sin y, f¯ f
o
exp (®νt).

It is clear that it is asymptotically stable at any f
o
.
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When assigning characteristic parameters ρ
o
,P

o
,L, f

o
in all the above solutions one

should demand that M #
o
¯ ρ

o
( f

o
L)#}(γP

o
)' 1 (usually then rp}Pr' 1 as well) in

order to ensure the validity of our model.

4.2. One-dimensional unsteady flows of �iscous heat-conducting gas
in a domain of finite length

A series of exact solutions will now be derived for one-dimensional unsteady subsonic
viscous flow with strong heat conduction. In this case we take the version of (52)–(55)
for u(x, t), ρ(x, t), p(x, t), P(t) keeping µ,λ,γ,R as constant coefficients and assuming
f¯ 0, Q¯ 0:

ρ(¥u}¥tu ¥u}¥x)¥p}¥x¯ %

$
µ ¥#u}¥x#, (66)

¥ρ}¥t¥(ρu)}¥x¯ 0, (67)

¥u}¥x¯ [λ(γ®1)}(γP)] ¥#T}¥x#®(dP}dt)}(γP), (68)

P¯ ρRT. (69)

Here we can follow the same approach as in the one-dimensional inviscid case, i.e. first
we find a certain exact solution for u(x, t), ρ(x, t), P(t) by using only (67)–(69). Then it
is possible to obtain p(x, t) by integrating (66) with the use of (13).

(i) Let us look for the solutions where

T¯Ax#, ρ¯P}(RAx#), u¯Bx, A¯A(t)" 0, B¯B(t), (70)

within an interval 0!x
"
!x!x

#
, x

#
®x

"
¯L. Then equation (68) becomes

¥u}¥x¯B(t)¯ 2λ(γ®1)A}(γP)®(dP}dt)}(γP). (71)

Substitution of (70) into (67) yields

dY}dt¯YB where Y(t)¯P}A. (72)

From (71), (72) we can obtain the following equation which gives a relation between
possible functions P(t) and A(t) that in turn enables us to obtain a family of exact
solutions:

(γ1)AdY}dtYdA}dt®2λ(γ®1)A¯ 0. (73)

For instance, on specifying function A(t) we get Y from the solution of (73). Then
we can find B(t) from (72) and so u(x, t), ρ(x, t), p(x, t) will be determined. We see that
for all such solutions

¥#u}¥x#¯ 0, ¥u}¥tu ¥u}¥x¯x(B#dB}dt)¯ (x}Y ) d#Y}dt#.

(ii) If we take A¯A
o
exp (αt) with constant values of both A

o
and α1 0, equation

(73) will have the form

(γ1) dY}dtYα®2λ(γ®1)¯ 0, (74)

and the solution of (74) for finite t can be written as

Y¯Y
o
ω2λ[(γ®1)}α] [1®ω],

where ω¯ exp [®αt}(γ1)], Y
o
¯P

o
}A

o
, P

o
¯P(0).

As a result we have

P¯P
o
ω exp (αt)[2λA

o
(γ®1)}α] [1®ω] exp (αt),

and then one can find u(x, t), ρ(x, t).
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(iii) Let us consider the case A¯ const. Then we obtain directly from (73) that

P¯P
o
t[2λA(γ®1)}(γ1)], u¯x(dP}dt)}P,

M #¯ u#}(γRT )¯ 4Aλ#(γ®1)#}[γ(γ1)#RP#]. * (75)

It is easy to see that dP}dt" 0, ¥ρ}¥t" 0 because of the negative difference between
boundary values of mass flux

δρu¯ ρu(x
#
, t)®ρu(x

"
, t)¯®2λ(γ®1)L}[R(γ1)x

"
x
#
]! 0.

(iv) If we take P¯ const, the following solution can be found from (73) :

u¯ 2kAx, A¯A
o
}[12kA

o
t], A

o
¯A(0), k¯λ(γ®1)}(γP)" 0. (76)

Here ¥ρ}¥t" 0 due to δρu! 0 as in (75).
In this and the previous solution we have ¥u}¥tu ¥u}¥x¯ 0 and hence p(x, t)¯ 0.

Therefore solutions (75), (76) satisfy even the more general system of equations
describing one-dimensional motion of a compressible viscous medium.

4.3. One-dimensional flows of �iscous heat-conducting gas in a half-space

Below, a set of exact solutions is given for unsteady one-dimensional subsonic flows of
viscous heat-conducting gas in the half-space x" 0. Here we assume P¯P¢ ¯ const,
T¢ ¯T

o
¯ const for all these flows. Then we derive the following system of equations

from (66)–(69) :
¥T}¥tu ¥T}¥x®T ¥u}¥x¯ 0,

¥u}¥x¯k(¥#T}¥x#),

where k¯λ(γ®1)}(γP)¯ const" 0. Now one can write the relation between u and T
as follows:

u¯k(¥T}¥x)W,

with a function W(t) which depends on the boundary conditions at x¯ 0 or x¯¢.
Then, by eliminating u from the system, we obtain the nonlinear parabolic equation

¥T}¥tk(¥T}¥x)#W(¥T}¥x)®kT(¥#T}¥x#)¯ 0. (77)

Thus the problem reduces to the solving of this equation with the appropriate W(t). It
should be noted, however, that this equation departs substantially from the
conventional equation of heat conduction, and hence new unusual effects can be
studied within our approach.

If we consider only those solutions where u¢ ¯ 0, then W(t)¯ 0 and so equation (77)
can be reduced to

¥T}¥tk(¥T}¥x)#®kT(¥#T}¥x#)¯ 0, (78)

which in turn can be rewritten with the use of transformation T¯ exp (Ψ) as

¥Ψ}¥t®k(¥#Ψ}¥x#) exp (Ψ )¯ 0.

(i) The following exact solution of (77) has been found for finite t :

T¯ g exp (®ηx)T
o
, u¯kηg[1®exp (®ηx)],

g¯ [A exp (bt)]}[1(A}T
o
) (1®exp (bt))],

b¯kη#T
o
, η¯ const" 0, A¯ const, rAr'T

o
, 0! t# 1}b.

This simulates the flow initiated by assigned variations of temperature on the non-
moving impermeable wall x¯ 0, and results in u¢ ¯W(t)¯kηg.
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Here it is logical to demand

M #¯ su#}(γRT
o
)s¯O[(λ#η#A#)}(RP#T

o
)]' 1. (79)

(ii) In addition it is worth giving the simple stationary solution of (77) :

T¯T
o
[1®exp (®ηx)], u¯®kηT,

η¯ const" 0, x"x
o
$ 1}η,

where requirement (79) with A¯O(T
o
) has to be met as well.

(iii) In the case u¢ ¯ 0 the following solution of (78) has been found:

T¯A exp (tkη#T
o
) exp (®ηx)T

o
, u¯®kη(T®T

o
),

η¯ const" 0, A¯ const, rAr'T
o
, 0! t# 1}(kη#T

o
),

with the condition (79).
(iv) We have also obtained the solution of (78) with harmonic oscillations of both

u and T at boundary x¯ 0:

T¯T
o
A exp [i(βx®ωt)], u¯ ikβ(T®T

o
),

β¯ (1i)}δ, δ¯ (2kT
o
}ω)"/#, A¯ const.

Here rAr'T
o
, ω#δ#}(RT

o
)' 1 are the obvious conditions for the model validity.

5. Concluding remarks

A new mathematical model has been proposed for the simulation of non-steady
subsonic flows in a bounded spatial domain under rather complex boundary
conditions, with continuously distributed sources of mass, momentum and entropy as
well as with heat conduction, etc., but excluding all acoustic phenomena. This model
is an extension of the classical model of incompressible fluid flow, the latter having too
many restrictions to be applicable for the solution of the topical problems discussed in
the introduction.

It should be emphasized that this model is essentially non-local. Indeed, we have
departed from the traditional way of designing a local system of differential equations
governing the fluid motion in a small internal volume irrespective of the possible set of
boundary conditions. Rather, a quite general model of the initial-boundary-value
problem has been created for the simulation of unsteady subsonic flows without
acoustics. Through this concept we have obtained novel systems of integro-differential
equations providing ample opportunities for their applications.

The approach described involves the procedure of pressure splitting, where the total
static pressure p

c
(r, t) is represented as a sum of two unknown variables : the average

pressure P(t) and the normalized pressure p(r, t). It has been shown that the global
variable P(t) depends on the assigned set of initial and boundary conditions as well as
on the distribution of volume sources. Thereby this procedure differs radically from the
usual methods where one considers small disturbances p«(r, t) near the known mean
pressure p

o
(r) – for instance, those which are applied in atmospheric dynamics and

acoustics, and in the theory of hydrodynamic stability, etc.
In the case of inviscid subsonic flow we have derived a new approximate system

of basic equations which exhibits a number of distinct features. First, in comparison
with the classical model of incompressible fluid flow this model is characterized by
divu1 0. Moreover, the proposed system of equations displays non-local instan-
taneous connections between divu, boundary conditions and distribution of volume
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sources all over the spatial domain G. This is not unexpected, since the speed of sound
is infinitely large within this model. As a result this approach gives the solution of the
long-standing problem of simulation of continuously distributed sources of mass,
momentum and entropy that was usually considered only by applying the general
model of compressible fluid flow. The possibility of assigning the boundary values of
normal velocity in an independent way is the other important advantage of this model.
It has also been shown that time changes in P(t) could be the reason for the appearance
of vorticity sources which in turn could have a radical influence on the stability of all
the flow.

After taking into account the effects of viscosity and molecular heat conductivity we
have developed a more general version of the model that displays new unusual
properties. For instance, equation (54) shows that divu depends on div (λ¡T ) even if
ξ¯ η

m
¯Q¯dP}dt¯ 0. This significant feature removes the principal contradictions

arising when we try to use the equation divu¯ 0 in subsonic problems with strong heat
conduction. In particular, this approach enables one to eliminate the spurious effects
of mass imbalance which can occur if the classical model of incompressible viscous
fluid flow is applied to the study of heat convection in a closed volume. Thereby a
radically new interpretation of the Navier–Stokes equations is given for a heat-
conducting gaseous medium where acoustics is fully excluded. This model seems to be
the most effective means in the study of high-temperature subsonic flows with
distributed heat sources since the exclusion of sound waves permits us to investigate the
direct interactions between the disturbances of vorticity and entropy, so that the
influence of thermal effects on the hydrodynamic stability of bounded vortical flows
can be found.

The absence of acoustic effects within this model may be of great value in the
numerical simulation of unsteady subsonic flows. If M' 1, we can make the following
estimates which are valid for many types of finite-difference schemes:

τ¯O(h}u
m
), τ

c
¯O[h}(au

m
)]' τ.

Here τ, τ
c
are the time steps of the finite-difference schemes for the given model and for

the general model of a compressible medium, respectively, h is the minimum step size
of the spatial grid, u

m
¯max rur in G, a is the mean value of sound velocity. The same

holds true for viscous flows if we neglect the influence of viscosity and heat conductivity
on the time step, as is acceptable at appreciable Reynolds numbers.

In addition, our model can simplify some computational problems in assigning the
appropriate set of boundary conditions, for both viscous and inviscid cases. Generally,
by excluding acoustics, we have avoided the numerous difficulties which could arise
while analysing the acoustic properties of permeable boundaries.

The set of exact solutions given demonstrates how this approach could be used
for the simulation of diverse subsonic flows, both viscous and inviscid. All these
solutions represent a necessary supplement to the general description of the model.
Additionally, they can serve as tests if we decide to apply this model to the
computational study of multi-dimensional unsteady problems. Moreover, every exact
solution of a nonlinear problem in fluid mechanics, especially any time-dependent
solution of Navier–Stokes equations, has a high intrinsic value irrespective of its
practical interpretation.

It is difficult to enumerate the great number of cases where this model could be
successfully applied, but it is apparent that internal subsonic problems (unsteady non-
uniform flows in ducts or in closed volumes under complex boundary conditions, with
both distributed sources and intensive heat transfer, etc.) represent a vast area of



Unsteady subsonic flow with acoustics excluded 155

possible applications. This model, being much more general than the classical model
of incompressible fluid flow, takes into account many delicate effects incompletely
studied before. It can promote new insight into some fundamental phenomena, and in
turn, effective means of control over bounded subsonic flows could be developed.

I am grateful to Professor D. G. Crighton for numerous suggestions on improvement
of the manuscript. Also, I am glad to take this opportunity to express my deep
gratitude to the Council and all Fellows of St John’s College in Cambridge, England,
for the kind invitation as well as for their warmest hospitality during my visit in 1996.
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